Grigori Yakovlevich Perelman (, ; born 13June 1966) is a Russian mathematician and geometer who is known for his contributions to the fields of geometric analysis, Riemannian geometry, and geometric topology. In 2005, Perelman resigned from his research post in Steklov Institute of Mathematics and in 2006 stated that he had quit professional mathematics, owing to feeling disappointed over the ethical standards in the field. He lives in seclusion in Saint Petersburg and has declined requests for interviews since 2006.
In the 1990s, partly in collaboration with Yuri Burago, Mikhael Gromov, and Anton Petrunin, he made contributions to the study of . In 1994, he proved the Soul theorem in Riemannian geometry, which had been an open problem for the previous 20 years. In 2002 and 2003, he developed new techniques in the analysis of Ricci flow, and proved the Poincaré conjecture and Thurston's geometrization conjecture, the former of which had been a famous open problem in mathematics for the past century. The full details of Perelman's work were filled in and explained by various authors over the following several years.
In August 2006, Perelman was offered the Fields Medal for "his contributions to geometry and his revolutionary insights into the analytical and geometric structure of the Ricci flow", but he declined the award, stating: "I'm not interested in money or fame; I don't want to be on display like an animal in a zoo." On 22 December 2006, the scientific journal Science recognized Perelman's proof of the Poincaré conjecture as the scientific "Breakthrough of the Year", the first such recognition in the area of mathematics.
On 18 March 2010, it was announced that he had met the criteria to receive the first Clay Millennium Prize for resolution of the Poincaré conjecture. On 1 July 2010, he rejected the prize of one million dollars, saying that he considered the decision of the board of the Clay Institute to be unfair, in that his contribution to solving the Poincaré conjecture was no greater than that of Richard S. Hamilton, the mathematician who pioneered the Ricci flow partly with the aim of attacking the conjecture. He had previously rejected the prestigious prize of the European Mathematical Society in 1996.
His mathematical education continued at the Leningrad Secondary School 239, a specialized school with advanced mathematics and physics programs. Perelman excelled in all subjects except physical education. In 1982, not long after his sixteenth birthday, he won a gold medal as a member of the Soviet team at the International Mathematical Olympiad hosted in Budapest, achieving a perfect score. He continued as a student of the School of Mathematics and Mechanics (the so-called "матмех" i.e. "math-mech") at Leningrad State University, without admission examinations, and enrolled at the university.
After completing his PhD in 1990, Perelman began work at the Leningrad Department of Steklov Institute of Mathematics of the USSR Academy of Sciences, where his advisors were Aleksandr Aleksandrov and Yuri Burago. In the late 1980s and early 1990s, with a strong recommendation from the geometer Mikhail Gromov, Perelman obtained research positions at several universities in the United States. In 1991, Perelman won the Young Mathematician Prize of the Saint Petersburg Mathematical Society for his work on Aleksandrov's spaces of curvature bounded from below. In 1992, he was invited to spend a semester each at the Courant Institute in New York University, where he began work on with lower bounds on Ricci curvature. From there, he accepted a two-year Miller Research Fellowship at the University of California, Berkeley, in 1993. After proving the Soul theorem in 1994, he was offered jobs at several top universities in the US, including Princeton and Stanford, but he rejected them all and returned to the Steklov Institute in Saint Petersburg in the summer of 1995 for a research-only position.
Perelman developed a version of Morse theory on Alexandrov spaces. Despite the lack of smoothness in Alexandrov spaces, Perelman and Anton Petrunin were able to consider the Vector field of certain functions, in unpublished work. They also introduced the notion of an "extremal subset" of Alexandrov spaces, and showed that the interiors of certain extremal subsets define a stratification of the space by topological manifolds. In further unpublished work, Perelman studied DC functions (difference of concave functions) on Alexandrov spaces and established that the set of regular points has the structure of a manifold modeled on DC functions.
For his work on Alexandrov spaces, Perelman was recognized with an invited lecture at the 1994 International Congress of Mathematicians.
Some of Perelman's work dealt with the construction of various interesting Riemannian manifolds with positive Ricci curvature. He found Riemannian metrics on the connected sum of arbitrarily many complex projective planes with positive Ricci curvature, bounded diameter, and volume bounded away from zero. Also, he found an explicit complete metric on four-dimensional Euclidean space with positive Ricci curvature and Euclidean volume growth, and such that the ultralimit is non-uniquely defined.
In 1982, William Thurston developed a novel viewpoint, making the Poincaré conjecture into a small special case of a hypothetical systematic structure theory of topology in three dimensions. His proposal, known as the Thurston geometrization conjecture, posited that given any closed three-dimensional manifold whatsoever, there is some collection of two-dimensional spheres and Torus inside of the manifold which disconnect the space into separate pieces, each of which can be endowed with a uniform geometric structure.Thurston, William P. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. Thurston was able to prove his conjecture under some provisional assumptions. In John Morgan's view, it was only with Thurston's systematic viewpoint that most topologists came to believe that the Poincaré conjecture would be true.John Morgan. "The Poincaré conjecture." Lecture at 2006 International Congress of Mathematicians.
At the same time that Thurston published his conjecture, Richard Hamilton introduced his theory of the Ricci flow. Hamilton's Ricci flow is a prescription, defined by a partial differential equation formally analogous to the heat equation, for how to deform a Riemannian metric on a manifold. The heat equation, such as when applied in the sciences to physical phenomena such as temperature, models how concentrations of extreme temperatures will spread out until a uniform temperature is achieved throughout an object. In three seminal articles published in the 1980s, Hamilton proved that his equation achieved analogous phenomena, spreading extreme curvatures and uniformizing a Riemannian metric, in certain geometric settings.Hamilton, Richard S. Three-manifolds with positive Ricci curvature. J. Differential Geometry 17 (1982), no. 2, 255–306.Hamilton, Richard S. Four-manifolds with positive curvature operator. J. Differential Geom. 24 (1986), no. 2, 153–179.Hamilton, Richard S. The Ricci flow on surfaces. Mathematics and general relativity (Santa Cruz, CA, 1986), 237–262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. As a byproduct, he was able to prove some new and striking theorems in the field of Riemannian geometry.
Despite formal similarities, Hamilton's equations are significantly more complex and nonlinear than the heat equation, and it is impossible that such uniformization is achieved without contextual assumptions. In completely general settings, it is inevitable that "singularities" occur, meaning that curvature accumulates to infinite levels after a finite amount of "time" has elapsed. Following Shing-Tung Yau's suggestion that a detailed understanding of these singularities could be topologically meaningful, and in particular that their locations might identify the spheres and tori in Thurston's conjecture, Hamilton began a systematic analysis. Throughout the 1990s, he found a number of new technical results and methods, culminating in a 1997 publication constructing a "Ricci flow with surgery" for four-dimensional spaces. As an application of his construction, Hamilton was able to settle a four-dimensional curvature-based analogue of the Poincaré conjecture. Yau has identified this article as one of the most important in the field of geometric analysis, saying that with its publication it became clear that Ricci flow could be powerful enough to settle the Thurston conjecture.Yau, Shing-Tung. Perspectives on geometric analysis. Surveys in differential geometry. Vol. X, 275–379, Surv. Differ. Geom., 10, Int. Press, Somerville, MA, 2006. The key of Hamilton's analysis was a quantitative understanding of how singularities occur in his four-dimensional setting; the most outstanding difficulty was the quantitative understanding of how singularities occur in three-dimensional settings. Although Hamilton was unable to resolve this issue, in 1999 he published work on Ricci flow in three dimensions, showing that if a three-dimensional version of his surgery techniques could be developed, and if a certain conjecture on the long-time behavior of Ricci flow could be established, then Thurston's conjecture would be resolved.Hamilton, Richard S. Non-singular solutions of the Ricci flow on three-manifolds. Comm. Anal. Geom. 7 (1999), no. 4, 695–729. This became known as the Hamilton program.
Perelman's first preprint contained two primary results, both to do with Ricci flow. The first, valid in any dimension, was based on a novel adaptation of Peter Li and Shing-Tung Yau's differential Harnack inequalities to the setting of Ricci flow.Li, Peter; Yau, Shing-Tung. On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (1986), no. 3-4, 153–201. By carrying out the proof of the Bishop–Gromov inequality for the resulting Li−Yau length functional, Perelman established his celebrated "noncollapsing theorem" for Ricci flow, asserting that local control of the size of the curvature implies control of volumes. The significance of the noncollapsing theorem is that volume control is one of the preconditions of Hamilton's compactness theorem. As a consequence, Hamilton's compactness and the corresponding existence of subsequential limits could be applied somewhat freely.
The "canonical neighborhoods theorem" is the second main result of Perelman's first preprint. In this theorem, Perelman achieved the quantitative understanding of singularities of three-dimensional Ricci flow which had eluded Hamilton. Roughly speaking, Perelman showed that on a microscopic level, every singularity looks either like a cylinder collapsing to its axis, or a sphere collapsing to its center. Perelman's proof of his canonical neighborhoods theorem is a highly technical achievement, based upon extensive arguments by contradiction in which Hamilton's compactness theorem (as facilitated by Perelman's noncollapsing theorem) is applied to construct self-contradictory manifolds.
Other results in Perelman's first preprint include the introduction of certain monotonic quantities and a "pseudolocality theorem" which relates curvature control and isoperimetry. However, despite being major results in the theory of Ricci flow, these results were not used in the rest of his work.
The first half of Perelman's second preprint, in addition to fixing some incorrect statements and arguments from the first paper, used his canonical neighborhoods theorem to construct a Ricci flow with surgery in three dimensions, systematically excising singular regions as they develop. As an immediate corollary of his construction, Perelman resolved a major conjecture on the topological classification in three dimensions of which admit metrics of positive scalar curvature. His third preprint (or alternatively Colding and Minicozzi's work) showed that on any space satisfying the assumptions of the Poincaré conjecture, the Ricci flow with surgery exists only for finite time, so that the infinite-time analysis of Ricci flow is irrelevant. The construction of Ricci flow with surgery has the Poincaré conjecture as a corollary.
In order to settle the Thurston conjecture, the second half of Perelman's second preprint is devoted to an analysis of Ricci flows with surgery, which may exist for infinite time. Perelman was unable to resolve Hamilton's 1999 conjecture on long-time behavior, which would make Thurston's conjecture another corollary of the existence of Ricci flow with surgery. Nonetheless, Perelman was able to adapt Hamilton's arguments to the precise conditions of his new Ricci flow with surgery. The end of Hamilton's argument made use of Jeff Cheeger and Mikhael Gromov's theorem characterizing collapsing manifolds. In Perelman's adaptation, he required use of a new theorem characterizing manifolds in which collapsing is only assumed on a local level. In his preprint, he said the proof of his theorem would be established in another paper, but he did not then release any further details. Proofs were later published by Takashi Shioya and Takao Yamaguchi,Shioya, Takashi; Yamaguchi, Takao. Volume collapsed three-manifolds with a lower curvature bound. Math. Ann. 333 (2005), no. 1, 131–155. John Morgan and Gang Tian,Morgan, John; Tian, Gang. The geometrization conjecture. Clay Mathematics Monographs, 5. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2014. x+291 pp.
Jianguo Cao and Jian Ge,Cao, Jianguo; Ge, Jian. A simple proof of Perelman's collapsing theorem for 3-manifolds. J. Geom. Anal. 21 (2011), no. 4, 807–869. and Bruce Kleiner and John Lott.Kleiner, Bruce; Lott, John. Locally collapsed 3-manifolds. Astérisque No. 365 (2014), 7–99.
In April 2003, Perelman visited the Massachusetts Institute of Technology, Princeton University, Stony Brook University, Columbia University, and New York University to give short series of lectures on his work, and to clarify some details for experts in the relevant fields. In the years afterwards, three detailed expositions appeared, discussed below. Since then, various parts of Perelman's work have also appeared in a number of textbooks and expository articles.
Nevertheless, on 22 August 2006, at the International Congress of Mathematicians in Madrid, Perelman was offered the Fields Medal "for his contributions to geometry and his revolutionary insights into the analytical and geometric structure of the Ricci flow". He did not attend the ceremony and the presenter informed the congress that Perelman declined to accept the medal, which made him the only person to have ever declined the prize.
He has also rejected a prestigious prize from the European Mathematical Society.
On 18 March 2010, Perelman was awarded a Millennium Prize for solving the problem. On 8 June 2010, he did not attend a ceremony in his honor at the Institut Océanographique de Paris to accept his $1 million prize. According to Interfax, Perelman refused to accept the Millennium Prize in July 2010. He considered the decision of the Clay Institute unfair for not sharing the prize with Richard S. Hamilton, and stated that "the main reason is my disagreement with the organized mathematical community. I don't like their decisions, I consider them unjust."
The Clay Institute subsequently used Perelman's prize money to fund the "Poincaré Chair", a temporary position for young promising mathematicians at the Paris Institut Henri Poincaré.
Perelman is quoted in a 2006 article in The New Yorker saying that he was disappointed with the ethical standards of the field of mathematics. The article implies that Perelman refers particularly to alleged efforts of Fields medalist Shing-Tung Yau to downplay Perelman's role in the proof and play up the work of Huai-Dong Cao and Zhu Xiping. Perelman added:
This, combined with the possibility of being awarded a Fields Medal, led him to state that he had quit professional mathematics by 2006. He said:
It was unclear whether along with his resignation from Steklov and subsequent seclusion Perelman stopped his mathematics research. Yakov Eliashberg, another Russia mathematician, said that in 2007 Perelman confided to him that he was working on other things, but that it was too premature to discuss them. Perelman has shown interest in the Navier–Stokes equations and the problem of their solutions' existence and smoothness, according to Le Point.
In 2014, Russian media reported that Perelman was working in the field of nanotechnology in Sweden. Shortly thereafter, however, he was spotted again in his native hometown of Saint Petersburg. Russian media speculated that he periodically visits his sister in Sweden, while living in Saint Petersburg and taking care of his elderly mother.
A Russian documentary about Perelman in which his work is discussed by several leading mathematicians, including Mikhail Gromov, Ludvig Faddeev, Anatoly Vershik, Tian Gang, John Morgan and others was released in 2011 under the title "Иноходец. Урок Перельмана" ("Maverick: Perelman's Lesson").
In April 2011, Aleksandr Zabrovsky, producer of President-Film studio, claimed to have held an interview with Perelman and agreed to shoot a film about him, under the tentative title The Formula of the Universe. Zabrovsky said that in the interview, Perelman explained why he rejected the one million dollar prize. A number of journalists believe that Zabrovsky's interview is most likely a fake, pointing to contradictions in statements supposedly made by Perelman.
The writer Brett Forrest briefly interacted with Perelman in 2012.
Early life and education
Early research
Convex geometry
Negatively curved hypersurfaces
Alexandrov spaces
Comparison geometry
Geometrization and Poincaré conjectures
The problems
Perelman's work
Verification
Fields Medal and Millennium Prize
Possible withdrawal from mathematics
Perelman and the media
Publications
Dissertation
Research papers
Unpublished work
See also
Notes
Sources
External links
|
|